首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220228篇
  免费   17833篇
  国内免费   8647篇
工业技术   246708篇
  2024年   388篇
  2023年   3295篇
  2022年   5135篇
  2021年   8204篇
  2020年   6211篇
  2019年   5423篇
  2018年   5817篇
  2017年   6632篇
  2016年   6175篇
  2015年   7966篇
  2014年   10451篇
  2013年   13321篇
  2012年   13454篇
  2011年   15300篇
  2010年   12931篇
  2009年   12712篇
  2008年   12036篇
  2007年   11590篇
  2006年   11992篇
  2005年   10465篇
  2004年   7291篇
  2003年   6526篇
  2002年   6152篇
  2001年   5387篇
  2000年   5202篇
  1999年   5916篇
  1998年   5432篇
  1997年   4447篇
  1996年   4011篇
  1995年   3413篇
  1994年   2861篇
  1993年   2257篇
  1992年   1748篇
  1991年   1320篇
  1990年   1055篇
  1989年   903篇
  1988年   704篇
  1987年   493篇
  1986年   388篇
  1985年   324篇
  1984年   201篇
  1983年   184篇
  1982年   160篇
  1981年   139篇
  1980年   134篇
  1979年   101篇
  1978年   69篇
  1977年   66篇
  1976年   80篇
  1973年   39篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
目的:研究抗成纤维细胞生长因子(FGF-2)纳米抗体对碱烧伤诱导的大鼠角膜血管生成的治疗作用。方法:将SD大鼠分为:假手术组(Sham),模型组(Model,直径为3 mm的浸有1 mol/L NaOH溶液圆形滤纸贴于大鼠眼角膜中央处30 s,制备大鼠碱烧伤血管生成模型)和治疗组(Treatment,术后7天至21天用3 mg/mL的抗FGF-2纳米抗体溶液滴眼,每日3次,每次10 μL,共14天)。通过体视显微镜和CD31免疫组织化学染色计算大鼠角膜血管生成情况。实时荧光定量PCR、酶联免疫吸附测定和免疫组织化学染色3种方法检测抗血管内皮生长因子(VEGF)和FGF-2的mRNA和蛋白表达水平。结果:(1)血管:治疗组较模型组的面积显著减少,血管管腔较窄(P<0.05),在药物干预14天后,差异最为显著;(2)FGF-2的mRNA和蛋白表达水平:模型组与治疗组的结果相近(P>0.05);(3)VEGF的mRNA和蛋白表达水平:治疗组显著高于模型组(P<0.05)。此外,假手术组的持续给药也使得VEGF表达显著增加(P<0.05)。 结论:抗FGF-2纳米抗体可抑制由碱烧伤诱导的角膜血管新生,但也使得正常大鼠角膜或病理大鼠角膜的VEGF表达水平代偿性升高。  相似文献   
72.
Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self-healing. Here, a polyurethane (DA-PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra-chain and inter-chain donor-acceptor self-assembly, which endow the polyurethane with toughness, self-healing, and, more interestingly, thermal repair, like human muscle. In detail, DA-PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti-fatigue and anti-stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long-time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self-healing speed of DA-PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self-healable capacitive sensor is constructed and evaluated to prove that DA-PU matrix can ensure the stability of electronics even after critical deformation and cut off.  相似文献   
73.
In this paper, a novel H2Ti2O5@MoS2@SiO2 ternary composite material was prepared by a combination of dual hydrothermal method and controlled hydrolysis method, in which H2Ti2O5 nanotubes are tightly combined with hierarchical molybdenum disulfide, and the unique structure of titanate nano whiskers, including the loosely bound alkali metal ions between the titanate layers with high dielectric constant and the large aspect ratio, which induce active response to the electric field. Flower-like molybdenum disulfide provides electrical conductivity, and silicon dioxide as a insulative coating layer can suppress excessive the electrical conductivity of the two-dimensional material. The morphological evolution was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results of showed that the sheet-shaped molybdenum disulfide coated with curved H2Ti2O5 nanotubes showed a honeycomb structure with uniform size. Silicon oxide acts as a cladding layer to increase the thickness of the flakes. The existence of H2Ti2O5, molybdenum disulfide and silicon dioxide is confirmed by X-ray powder diffractometer (XRD) and Fourier transform infrared spectroscopy (FT-IR). The prepared product was confirmed by XPS, BET test and electrorheological rheometer. Core/shell nanoparticles not only exert the active response characteristics of titanate nanoparticles and molybdenum disulfide to electric field, but also inherit the excellent characteristics of a core-shell structure produced by the interface polarization and the synergistic effect of the polar groups on the surface of the two-dimensional material further enhance the electrorheological effect.  相似文献   
74.
Understanding the spheroidization process of micron-scaled α-Al2O3 powder in hydrothermal method is of great importance but still not completely revealed. The results demonstrated that SO42? played a significant role in the formation of spherical powder, while the bubble generated from the reaction of urea didn't work in the spheroidization process. The spheroidization process was summed up as two steps. The first was that SO42? limited the hydrolysis of Al3+ and reacted with Al3+ and OH- to form Al4(OH)10SO4, which nucleated and agglomerated into granular precipitates. The second was Ostwald ripening, which gave the spherical precursors a double-layered structure. When the spherical precursors obtained 120 °C were sintered at 1200 °C, α-Al2O3 were got and the spherical morphology still maintained with a large number of nano-sized pores. We anticipate the spherical α-Al2O3 with nano-sized pores can be applied in adsorption and filtration industries.  相似文献   
75.
A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport path of lithium ions and electrons, but also reduce the side effects and withstand the structural strain in the process of repetitive Li~+ intercalation/deintercalation. In this work, an e fficient method for designing the hollow LNMO microsphere with 3 D channels structure by using polyethylene oxide(PEO) as soft template agent assisted solvothermal method is proposed. Experimental results indicate that PEO can make the reagents mingle evenly and nucleate slowly in the solvothermal process, thus obtaining a homogeneous distribution of carbonate precursors. In the final LNMO products, the hollow 3 D channels structure obtained by the decomposition of PEO and carbonate precursor in the calcination can provide abundant electroactive zones and electron/ion transport paths during the charge/discharge process, which benefits to improve the cycling performance and rate capability. The LNMO prepared by adding 1 g PEO possesses the most outstanding electrochemical performance, which presented an excellent discharge capacity of 143.1 mAh g~(-1) at 0.1 C and with a capacity retention of 92.2% after 100 cycles at 1 C. The superior performance attributed to the 3 D channels structure of hollow microspheres, which provide uninterrupted conductive systems and therefore achieve the stable transfer for electron/ion.  相似文献   
76.
Tumor-specific enhanced delivery of chemotherapeutics and modulators to tumor cells and activated pancreatic stellate cells (aPSCs), respectively, represents safer and more effective therapy for pancreatic cancer. Herein, a membrane type 1-matrix metalloproteinase (MT1-MMP)-cleavable spacer is used to assemble low-density cRGDfK onto thermosensitive liposomes loaded with phosphorylated calcipotriol (PCAL) and doxorubicin (DOX), yielding MR-T-PD. The liposome-linked cRGDfK prodrug on MR-T-PD surface is first activated by MT1-MMP, which is selectively expressed on tumor endothelial cells, to release cRGDfK. The free cRGDfK specifically promotes tumor angiogenesis, leading to 3.4-fold higher accumulation and a wider distribution of MR-T-PD in tumors. Furthermore, MR-T-PD rapidly releases PCAL and DOX into the interstitium under heat treatment. The released DOX enters tumor cells to induce apoptosis, whereas the PCAL prodrug is converted to CAL by alkaline phosphatase on the surface of aPSCs; CAL can then enter aPSCs to induce quiescence and promote the antitumor effect of DOX. Finally, by enhancing the exposure of DOX and CAL to tumor cells and aPSCs, respectively, in a tumor-specific manner, MR-T-PD exerts superior efficacy (a 5.9-fold decrease in tumor weight) without causing additional side effects. Overall, this prodrug-based smart liposome system represents a promising paradigm for pancreatic cancer therapy.  相似文献   
77.
Photoelectrochemical (PEC) water splitting into hydrogen and oxygen is a promising solution for the conversion and storage of solar energy. Because sluggish water oxidation is the bottleneck of water splitting, the design and preparation of an efficient photoanode is intensively investigated. Currently, all known photoanode materials suffer from at least one of the following drawbacks: ① low carriers separation efficiency; ② sluggish surface water oxidation reaction; ③ poor long-term stability; ④ insufficient water adsorption and gas desorption. Core–shell configurations can endow a photoanode with improved activity and stability by coating an overlayer that plays energetic, catalytic, and/or protective roles. The construction strategy has an important effect on the activity of a core–shell photoanode. Nonetheless, the mechanism for the improvement of performance is still ambiguous and is worthy of a closer examination. In this review, the successes and challenges of core–shell photoanodes for water oxidation, focusing on synthesis strategies as well as functionalities (facilitating carrier separation, surface reaction promotion, corrosion prevention, and bubble detachment) are explored. Finally, the perspectives of this class of materials in terms of new opportunities and efforts are discussed.  相似文献   
78.
Brazing, as a common method of bonding ceramic and metal, has been applied in microelectronics, aerospace, machinery and other domains extensively. The residual thermal stress in the brazed joint has direct effects on the mechanical properties of the joint, so how to control the generation of residual thermal stress has become the vital point. In this paper, the methods of reducing residual thermal stress in the brazing process in recent years are reviewed. The generation and effects of residual thermal stress in the brazed joint are introduced. Besides, the methods of detecting residual thermal stress are discussed, and different methods of reducing residual thermal stress in brazed joints are also analyzed. Finally, the future development directions of reducing residual thermal stress in the brazed joint are proposed.  相似文献   
79.
A novel La2MgGeO6 ceramic was synthesized through a solid-state reaction process within a sintering temperature range of 1450–1550 °C. By a combination of X-ray diffraction and Rietveld refinement analyses, the ceramics were found to have a pure hexagonal phase structure belonging to space group R3/146. The scanning electron microscopy images revealed that the ceramic grains were closely connected. The effects of internal (lattice energy, valence bond, and fraction packing) and external factors (density) on the microwave properties of ceramics were also studied. The ceramic exhibited excellent microwave dielectric performances, with a relative permittivity (?r) of 21.2, a quality factor (Q × f) of 52 360 GHz, and a temperature coefficient of resonant frequency (τf) of ?44.2 ppm/°C, when sintered at 1500 °C for 4 h. The τf value of the La2MgGeO6 ceramic doped with CaTiO3 could be adjusted to zero. Particularly, 0.2La2MgGeO6-0.8CaTiO3 ceramics have good microwave dielectric properties with τf = +2.1 ppm/°C, Q × f = 15 610 GHz, and ?r = 40.3.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号